IBM's ECOL - Enhanced Emission Calculation Methodologies – Case Study

Paper # 69748

Bruce Tripp, Tuan Vo and Steven Hawkins IBM, Building 325, Route 52, Hopewell Junction, NY 12533

John F. Takacs and Paula J. Olsson HighPoint Software Services, Inc., P.O. Box 874, Westminster, MA 01473

Lisa Schaefer, Robert Fromme, Anastasia Howard and Jeffrey Stringer

CDI Corporation, 2345 Route 52, Hopewell Junction, NY 12533

ABSTRACT

IBM's Environmental Control of the Line ("ECOL") management system is used to track the air, water and waste emissions for all of the manufacturing tools used at the East Fishkill Facility. A recent upgrade to the ECOL system has added enhanced air emission calculation methodologies for Title V real-time continuous compliance.

The IBM East Fishkill plant manufactures semiconductor devices (chips) and substrate packaging. The substrate packaging is used to mount the "chips" for installation into the computers. The semiconductor and substrate packaging manufacturing processes consists of hundreds of chemical using steps. ECOL uses a variety of methods to determine the air emissions for semiconductor and substrate packaging manufacturing and supporting activities:

Materials balance is employed for tools that use gases to perform processes such as chemical vapor deposition and etching.

Wet tools operation includes: chemical baths, spray cleaning and application of organic slurries.

Supporting activities at the plant include chemical /waste handling, wastewater treatment and fuel combustion for generating high temperature hot water.

Incorporating the most accurate emission methodologies available into the ECOL system, has provided IBM with a comprehensive Title V compliance tool which is able to produce highly accurate emission reports.

INTRODUCTION

The IBM Plant located in The Town of East Fishkill, New York, manufactures semiconductor devices (chips) and substrate packaging. The substrate packaging is used to mount the "chips" for installation into the computers. The semiconductor and substrate packaging manufacturing processes consist of hundreds of chemical steps. In order to manage environmental aspects related to the manufacturing of semiconductor and substrate packaging, IBM created the Environmental Control of the Line System (ECOL).

The ECOL system is a Windows-based system used to track and report material/chemical usage at a production tool and the emissions to air, water and solid waste. The ECOL system has evolved at IBM East Fishkill from a mainframe program initiated in the 1970's to its current version as a Windows-based, Title V continuous compliance tool.

- ECOL is a cradle to grave tracking system with the following capabilities:
- Import information about chemicals delivered to a tool,
- check the authorization for chemical usage limits,
- track chemical usage amounts,
- determine the emission fate and rate of the chemicals used at a tool

To determine the air emissions for semiconductor, substrate packaging manufacturing and supporting activities ECOL uses a variety of emission estimation methods:

Materials balance is employed for tools using gases to perform processes such as chemical vapor deposition and etching.

Emission calculations for wet tools operation includes three types of installations: chemical baths, spray cleaning and application of organic slurries.

Supporting activities at the facility that require air emission calculations include chemical/waste handling, waste water treatment and fuel combustion for generating high temperature hot water.

ECOL SYSTEM

The ECOL system is a Windows-based program written in Microsoft's Visual Basic. The modules in the system consist of data entry for tool information, reports and support databases. The Support Tables contain information that is used throughout the system in drop down lists for the following:

- Exhaust Fans
- Part Numbers
- Chemical constituents
- Tool/equipment owners

- Buildings
- Control Devices
- Disposal Codes
- Fan Types
- Supply Systems
- Emission Units
- Regulatory Citations
- Calculation Types

An example of the Support Tables for Exhaust Fans are shown in Figures 1 and 2. The exhaust fans table includes information on fan type, manufacturer, location and physical parameters.

Figure 1.	Support	Table –	Exhaust	Fans
I iguic I.	Support	1a010 –	LAnaust	1 ans

use Environme RE File Edit	ntal Control of C Options Admin	Audits Windo	n (ECOL) - [Est w. Hein	aust Fans - [3	0000014]]						_ 8 X
Tools Pan Types	Reports Supply Systems	Exhaust Fans Control Types	Part Numbers Emission Units	Constituents Citations	Owner Calc Typ	rs pæs	Buildings OtherTables	Con	trol Devices Exit	Disposal Codes	
Exhaust Fans	- [300CC14]										
- Extra	et Gen	Fan		1	Spe	ecífica	ñons		- 1 [Controls	
Fan 300	ID CC14	Building 1 300C	Name F	Floor 1	State Fax KC14	n#	E In	Use		Erevious	
Fan 30A	Model VS		Fan Type AXIAL		*	Stat (F	us Running			Bottom	
Mar	ufacturer					0	Not Running			Seve	
DEI	BOTHEZAT					0	Remove			Egit	
Con	trol Device	Cont	rol Type			Contro	ol Efficiency			Add	
		<u> </u>								⊆ору	
597	MX (Meters) 961	UTM 4599	Y (Meters) 690	Elevation 317.94	n (Feet)	V	Export To A	0-Ce	lc	Delete	
						_				Find	
Updete Del 9/1	te Entered /2002	Entered By ECOL3	4/11/	Jpdated 2003	Updated PJ0	Вy	□ Del	eted		Usage Cjose	
				PJO	ADMIN	R	ecord 222 O	14471	B 4/1	1/2003 9.2	1 AM

Environmental Control of Die Edit Options Admin	the Line System (ECC Audits Window Hel	IL) - (Exha D	iust Fans - [31	000014]]					-8
Tools Reports an Types Supply Systems	Exhaust Fans Part f Control Types Emiss	ion Units	Constituents Citations	Owners Calc Types	Buildings OtherTables	Contro -	Exit	Disposal Codes	
aust Fans - [300CC14]									
·	Fen	1		Specific	cations		1 [Controls	
Specifications								Top	
Actual CFM	Design CFM		Rated CFI	м	Rated Motor	HP		Previous	
5286	6000		12800		5			Next	
Fan RPMs	Fan Height (Feet)		Stack Height Exit Te		Exit Temper	ature		Bottom	
870	9	_	10	<u>, </u>	70	_		-	
Discharge	Exit Velocity				1			igeve	-
Diameter (Inches)	(Feet/Secon	d)	Fan Mater	ial	Plenum Mete	erial		Egit	-11
30	17.95		STL		STL			Add	-11
Owner Name								Copy	-
IBM		-						Delete	
								Find	
- Update Log								Usage	
Date Entered	Entered By	Last U	pdated	Updated By					
9/1/2002	ECOL3	4/11/2	2003	PJ0	E Del	eted		Cjose	
			PJO	ADMIN I	Record 222 Of	4478	4/11	1/2003 9.2	5 AM

Figure 2. Support Table – Exhaust Fan Table specifications.

Each tool used at the facility is given a specific number (Brass Tag Number). Note that the term "tool" is used to describe all equipment on-site. This can be a production tool, boiler, chemical hood, etc. The ECOL system contains records for all tools on-site and tracks if they are in-service or if the record is for a new tool that is pending and not yet in operation. The ECOL system archives historical data which can retrieved. Figure 3 shows the specific information stored for each tool.

Tools Sup Tools (1000) Tools (1000) Brass Tag # UK02 Column	PEEPORS EXH pply Systems Con - [PECVD SIN/S Description PECVD SI	trol Types Emission Units 102 (S1.8)] tiel Conditions Req	,/Process Eng.	Cak Types Audits	OtherTables •	Ent	
Tools = [3002] Tools = [3002] Tool Brass Tag # [3002 Column		id (just [data data)	/Process Eng.	Audits	Ch	en la cha	
Tool Biass Tag # JK02 Column	Description	tial Conditions Req	/Process Eng.	Audits	1 Ch	envirole I	
Column		N/SID2 (51.8)			Build 323	ing Name	Controls <u>Top</u> <u>Previous</u> <u>Next</u>
F11	Floor 2	Department 323 Permit / Exercit / Trivial	A Calc	ElA Nuni 323	ber Hex N UK02	lumber	Bottom Save
© Manu C Devel	facturing lopment	Pernit Citation II Exempt Trivial	- Ovine	ICHIOMETRIC MA	TERIALS BALANC Source ID UK02	ε	Egit Add
Fan ID	Fans Actual CP	M Design CFM D	Control Device	Device:	Enission U H H00001 Process C	init To Hepoits	Delete Find
			()				Close Excipit.

Figure 3. Tool input screen

The main screen provides location information about a tool as well as any exhaust fans or control devices associated with the tool. The Chemicals flipcard contains information on the chemicals used by the tool (Figure 4). Each chemical used at a tool is identified by a specific IBM chemical part number and the common chemical name. This screen gives information on the amount of chemical supplied to the tool as well as the method of arrival to the tool – i.e. Supply System. The grid at the bottom of the screen details the environmental fate and amount of chemical that is disposed or emitted. This chemical can become part of a product, be disposed down a specific chemical drain, become solid waste or be emitted as an air emission.

Environmental Control of the Line System (ECOL) Dis Edit Onlines Advin, Audits Window Hele	_8 ×
Tools Reports Exhaust Fans Part Numbers Constituents Owners Buildings Control Devices Disple Pan Types Supply Systems Control Types Emission Units Citations Calc Types OtherTables Exit	osal Codes
Tools - [JK02] - [920005660] - [SILICON TETRAFLUORIDE,(GENERIC)] - [007783-61-1]	=D×
Tool Special Conditions Req./Process Eng. Audits Chemicals Chemical Part # Description CAS Number Abatement S20005660 SILICON TETRAFLUORIDE.(SENERIC) Supply System Input Quantity Units Per Day Hours / Day Days In Month / Year Temperature (F) C8 1639.02 UTERS 24 365 YEAR 70 	Controls <u>Top</u> <u>Previous</u> <u>Next</u> <u>Bottom</u>
Constituents CAS # Constituent Name Weight % Def Wit % Input Quantity Units O07783361-1 SLICON TETRAFLUDRIDE 100 T 1639.0033 LITER	Seve Edit Add Copy
007783-61-1 - SILICON TETRAFLUORIDE	Delete
Disposal Code Quantity Out Units / Day Month / Year Days Out FanID Control Device Efficiency DC 1639.02 UTERS YEAR 365	Find Close
	Fasight Update Log
PJO ADMIN Record 2 Ot 6 4/11/20	03 11:37 AM

Figure 4. Chemical usage and disposal for a tool.

The disposal code, (DC) indicates an air emission from the tool, the emission rate has been calculated using various methodologies built into ECOL to achieve the final emission rate.

AIR EMISSION CALCULATION METHODOLOGIES

Air Emissions in ECOL for semiconductor, substrate packaging manufacturing and supporting activities are estimated using a variety of methods ¹.

Materials Balance

Materials balance is typically employed for tools using gases to perform processes such as chemical vapor deposition and etching. For these processes the stoichiometry is known and defines the output chemicals. Any input chemicals used in excess of the "limiting factor" will be discharged with the reactants. Therefore, by "programming" the recipe and the designed flow rates for each tool, the ECOL system calculates the emission.

Material balance calculations for semiconductor fabrication processes are all based upon *process recipes*. A process recipe is the "cookbook" for a given process, a well defined system of operating parameters that provides the process engineer with the results he/she

is seeking. Process and tool engineers at the East Fishkill Site are required to provide the environmental team with the portion of the process recipe that environmental engineering has a need to know. This includes parameters such as, process chemical flow rates, operating temperature and pressures, chamber sizes, and freeboard height to list a few. An example of a process recipe provided to ECOL is shown below in Figure 5. Note that there are many process recipes for this tool, of which only one is shown¹.

After securing process recipes from process and tool engineers, a member of the ECOL team will "roll-up" all of the recipes into an ECOL form. The ECOL form will be a listing of all chemicals used on that particular tool, with flow rates and hours of utilization. A sample ECOL form for a gas phase tool is shown below in Figure 6. The completed ECOL form is the core information that allows the environmental engineer to calculate accurate air, water, and waste disposal masses.

At IBM East Fishkill's new state of the art 300mm fabrication facility, most gas phase tools have been coupled with a Point of Use abatement system. This system cracks harmful perfluorinated compounds that contribute to global warming into more benign compounds that can be transported into the aqueous phase and subsequently treated. Engineers at IBM East Fishkill have developed models to easily and accurately calculate air, water, and waste emissions using aforementioned recipes, stoichiometry, and gas phase absorption efficiencies. A typical model is shown and described below.

¹Actual process recipe data has been changed for this model.

Figure 5. Sample Process Recipe Provided by Equipment or Process Engineer

PARAMETERS				
Thickness of Layer	4500	R		
Thropot	80	WPH		
Accumulation Limit	180000	A		
Deposition Rate	7200	8/min		
Etch Rate	8000	A/min		
Hours of useIday	16.0	hrs/tlay		
Number of showers	4	heads		

FLOWS						
SiH4	740	seem				
NH3		scem				
N20	16000	scem				
SiF4		soom				
TE0\$		militain				
NF3 (etchani)	2500	seem				
02		soom				
H2		scom				
He	15600	scom				
112	18360	soom				
Ar		scom				

OXIDE

calculated columns show "ERR" until

parameters and Rows are entered

Real Thickness	1125	
Waters before etch	160	waters
Cycles/Day	8.23	cycles

USAGE						
SiH4	13.71	hrs/day				
NH3		hrs/day				
N20	13.71	hrs/day				
sif4		hrs.ktay				
TEOS		hrs/day				
NF3	3.09	hrs/day				
02		hrs/day				
H2		hrs/day				
He	13.71	hrs/day				
N2	16.8	hrs/day				
N		hrs/day				

Figure 6: Sample ECOL Form (Sum of Tool's Process Recipes)

IBM ECOL II - Please complete all boxes Date: 7/6/01 - Reference the Chemical Management and Environmental Manual On-Line New: - List all chemicals (see Chemical Management and Environmental Manual for exceptions) Update: REQUESTER NAME(PRINT) PHONE NLDG DEPT JOHN SMITH 2-1234 310 9XCA PROCES ENGINEER NAME 067 PHÓNE JANE DOE 2-4567 28QA EA.NO. TOOL DATA BRASS TAG/TOOL NUMBER CRM-51.80 TOOL DESCRIPTION HEC NO. Vector Single Chamber 50/50 SiO2/SIN + TEOS capability+ FSG JK02 DEPT. USING COLUMN FLOOR BLDG 323 1 UNIT USAGE USED TYPE CHEMICAL NO. CHEMICAL NAME QTY OF TEMP HRS./ DAYS/ 0F MEASURE DAY MONTH DRAIN 773.333333 920-007-500 SILANE RT 10.7 30 NA scom 925-860-060 AMMONIA 7500 RT 3.9 30 NA scom 929-076-300 NITROUS OXIDE 18000 6.8 scom RT 30 NA 920-005-660 SILICON TETRAFLUORIDE 2000 scom RT 13.66 30 NA. 910-025-420 TEOS 5 ml/min RT 3.79 30 NA. 920-044-130 NITROGEN TRIFLUORIDE 2500 seem RT 2.3 30 NA OXYGEN 9805 3.79 NA. 921-080-000 RT 30 scom HYDROGEN 0 RT 0 30 NA 921-010-020 seem 921-020-060 HELIUM 14244 RT 14.5 30 NA. seem 921-070-030 NITROGEN 11786.6667 NA RT 12.6 30 scom ARGON RT NA. 9000 16.8 30 921-180-000 scom GPM Reclaim H20 0.5 RT 24 30 929-000-010 DF FAN NO. 1 CFILINO.2 CEMINO, 1 FAN NO.2 FAN NO. 3 C FILIND, 3 FAN NO. 4 CFM NO. 4

COMMENTS:

Gas Phase Tool Emission Model:

Step I: Transfer ECOL Data into Emission Model

The first step in generating an emission model is to import the ECOL data, and thus the tool's process recipes, into the model's base table. A sample base table is shown below in Figure 7. From left to right, this table has CRM and HEX which are internal IBM tool identifiers, followed by calculation dates for audit purposes, abatement model, number of tools in this model, chemicals used in the tool, daily usage rates, units of usage, total usage (number of tools multiplied by usage/tool), and total usage converted to moles/day using the ideal gas law.

CRM#	HEX	Date of Most Recent Calc.	Abatement	Qty Tools	Chemicals	Usage/ Tool	Unit	Total Usage	Total Usage (mol/Day)
51.80	JK02	01-May-02	TPU	1	N20	7390.66	SLD	7390.66	329.940
51.80	JK02	01-May-02	TPU	1	NF3	341.53	SLD	341.53	15.247
51.80	JK02	01-May-02	TPU	1	NH3	1752.32	SLD	1752.32	78.228
51.80	JK02	01-May-02	TPU	1	SiF4	1639.02	SLD	1639.02	73.171
51.80	JK02	01-May-02	TPU	1	SiH4	498.21	SLD	498.21	22.241
51.80	JK02	01-May-02	TPU	1	TEOS	1135.77	mLD	1135.77	5.092

Figure 7. Emission Model Base Table

Step II: Tabulate System Input & Convert to Mass Quantities

Once the model's base information has been imported, we can begin to develop the mass balance through the system for each chemical. The total mass of all inputs must be tabulated and entered into an *Inputs Table* shown below in Figure 8. First, each chemical usage must be converted from molar units into mass in grams. Second, in order for the mass quantities to balance throughout the system we must calculate the *theoretical quantity of* oxygen and methane required to oxidize the influent stream. Next we add in the mass of reclaimed water that is necessary to transport the gaseous stream into the water stream. Each point of use abatement system uses approximately 0.5 GPM on average over a 24-hour period. This calculated quantity is entered into the model as *stream* 7. After calculating the mass quantities of specialty chemicals into the system, oxygen and natural gas for combustion, and scrubber water, we can add across columns, and then down rows to arrive at a total mass quantity entering the system.

ſ	Inputs to System (GM/DAY)								
	Stream 1	Stream 3	Stream 4	Stream 7					
Chemicals	hemicals Specialty O2 necessary to Chemcals Oxidize Chemicals		CH4 for Combustion of NF3	Reclaim H2O	Total In				
N20	14521.595	0.000	0.000		14521.595				
NF3	1082.544	447.197	183.438		1713.179				
NH3	1332.262	1877.225	0.000		3209.488				
SiF4	7615.580	4682.283	1173.731		13471.595				
SiH4	714.342	1423.256	0.000		2137.598				
TEOS	1060.81	1955.253	0.000	+	3016.067				
	26327.137	10385.215	1357.170	2726179.200	2764248.721				

Figure 8. Emission Model Inputs Table.

Step III: Stoichiometry

The third step in the development of an emission model is the most critical. This is where balanced chemical reactions must be written, and accurate destruction and transport efficiencies must be obtained from abatement equipment vendors. There are six columns in the *Reaction & RXN Efficiencies* Table (Figure 9). In order from left to right are chemical species, destruction efficiency in the point of use abatement burn unit, transport efficiency, stoichiometic oxygen and methane to combust each chemical, and balanced destruction reactions.

Figure 9. Reaction and RXN Efficiencies Table

Í	Reactions & RXN Efficiencies							
[
Chemicals	DRE	SE	Stoich 02	Stoich CH4	Destruction RXN			
N20	1	0	0	0	2N2O -> O2 + 2N2			
NF3	0.99995	0.999	0.92	0.75	12NF3 + 9CH4 + 11O2> 4N2 + 4NO + 36HF + 9CO2			
NH3	0.9999	0	0.75	0	4NH3 + 302>2N2 + 6H2O			
SiF4	0.9999	0.999	2.00	1	SiF4 + CH4 + 202> SiO2 + 4HF + CO2			
SiH4	0.9999	0.99	2	0	SiH4 + 202>SiO2 + 2H2O			
TEOS	1	1	12	0	Si(OC2H5)4 + 12O2>SiO2 + 8CO2 + 10H2O			

These balanced reactions will be converted in step IV to *Stoichiometric Coefficients* that will allow automatic calculation of mass quantities of breakdown products.

Step IV: Stoichiometic Coefficients Tabulation

The fourth step in the emission model is to translate a written balanced equation into a format recognized by common spreadsheet programs that will lend itself to automatic calculation of breakdown products and their associated mass quantities. For example, from Figure 9 above, we can see that 12 *moles* of NF3, plus 9 moles of methane, plus 11 moles of NF3, can be combusted into 4 moles of N2, 4 moles NO, 36 moles HF, and 9 moles CO2. To translate this into a usable format each breakdown product must be ratioed to the limiting reactant, here NF3, in order to derive stoichiometric coefficients (Figure 10).

	Mole Ratios									
	Burner RXNS									
Chemicals	SiO2	H20	N2	NO	HF	C02	W03	02		
N20	0.00	0.00	1.00	0.00	0.00	0.00	0.00	0.50		
NF3	0.00	0.00	0.33	0.33	3.00	0.75	0.00	0.00		
NH3	0.00	1.50	0.50	0.00	0.00	0.00	0.00	0.00		
SiF4	1.00	0.00	0.00	0.00	4.00	1.00	0.00	0.00		
SiH4	1.00	2.00	0.00	0.00	0.00	0.00	0.00	0.00		
TEOS	1.00	10.00	0.00	0.00	0.00	8.00	0.00	0.00		

Figure 10. Mole Ratios by Chemical Input

Step V: Calculation of Output Streams

The calculation of mass quantities of each constituent in each output stream is the most rigorous part in developing an air emission model. To this point the model has essentially been accounting and trivial calculation. Here in step 5 is where the stoichiometry is performed, and the output streams are divided into air and wastewater streams.

After completion of step V accurate drain and exhaust output tables will have been completed as shown below in Figures 11 and 12.

	System Output (GM/DAY) Stream 8 - DF Drain (GM/DAY)								
Chemicals	HF	C02	H20	SiO2	Reclaim	Total			
N20	0.000	0.000	0.000	0.000		0.00			
NF3	914.129	502.724	0.000	0.000		1416.85			
NH3	0.000	0.000	2113.741	0.000	1	2113.74			
SiF4	5849.062	3216.687	0.000	4391.613	1	13457.36			
SiH4	0.000	0.000	801.288	1322.876	1	2124.16			
TEOS	0.000	1792.782	917.333	305.952	1 ♦	3016.07			
	6763.191	5512.194	3832.362	6020.441	2726179.200	2748307.388			

Figure 11. Drain Output Table

Figure 12. Exhaust Output Table

		System Output (GM/DAY)										
		Stream 6 - General Exhaust (GM/DAY)										
Chemicals	HF	C02	SiO2	N2	NO	02	NF3	NH3	SiF4	SiH4	TEOS	Total
N2O	0.000	0.000	0.000	9242.749	0.000	5278.846	0.000	0.000	0.000	0.000	0.000	14521.60
NF3	0.915	0.503	0.000	142.363	152.490	0.000	0.054	0.000	0.000	0.000	0.000	296.33
NH3	0.000	0.000	0.000	1095.613	0.000	0.000	0.000	0.133	0.000	0.000	0.000	1095.75
SiF4	5.855	3.220	4.396	0.000	0.000	0.000	0.000	0.000	0.762	0.000	0.000	14.23
SiH4	0.000	0.000	13.362	0.000	0.000	0.000	0.000	0.000	0.000	0.071	0.000	13.43
TEOS	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.00
	6.770	3.723	17.758	10480.725	152.490	5278.846	0.054	0.133	0.762	0.071	0.000	15941.334

These two output tables (Figure 11 and 12) represent the usable information that will be used in ECOL for emission and wastewater reporting. These two tables detail one tool's, and thus its many recipes', contribution to the total emission and waste stream exiting the East Fishkill Site. When similar models are developed for other semiconductor fabrication tools, this system allows accurate emission calculation by process, building, or Site.

Wet Tool Operation

Wet tool operations include three types of installations: chemical baths, spray cleaning and application of organic slurries (including photoresist).

Emissions from chemical bath operations are estimated using the Ideal Gas Law. For each tool, data is recorded for bath dimensions, temperature, sparging, volume of exhaust, and total number of product cycles the tool runs in an hour. Emissions of spray tools are estimated using empirical data collected on similar applications and scaling for chamber size, adjusting for vapor pressure of the chemical at the temperature used in the tool. Emission for slurry/resist applications are calculated by determining the total volume of slurry/resist applied and assuming that all volatile compounds evaporate.

Chemical bath

Chemical bath operations are estimated by using a spreadsheet model, developed by ENSR, for IBM and is based on Antoine's equation and the ideal gas law. Vapor pressure is the (log(Pvap) = A-B/(T-C)). Where A, B, and C are Antoine's coefficients.

After obtaining the required information about the tool from the process and equipment engineers the spreadsheet in Figure 13 is completed in order to calculate the emissions based on the maximum production throughput of the tool.

IBM Corpora	ation					
SOLVENTA	AND ACID B	ATH EMISS	IONS ESTIM	ATING MOI	DEL	
OUTPUT	Calculation	results and in	nput data ver	rification		
0						
Print date:	28-Jan-03		Print time:	03:27 PM		
A. Input date	o.					
Most similar	hood type is	5:	Plain multipl	e slat openi	ng. 2 or more :	slots
Exhaustflow	r (cfm):				185.6	
Hood openi	ng length (L.	in):			4	
Hood openi	ing width (W.	in):			4	
Average dis	stance of tank	k from hood	opening (in):		-8	
Dip tank len	ath (in):				13.9	
Dip tank wid	lth (in):				12.4	
Dip tank und	covered area	a (sq.in.):			172.36	
Average su	rface area of	dipped part	ts and baske	et (sq.ft.):	86.5	
Average nu	mber of parts	s dipped (pa	rts/hr):		1	
Meximum nu	umber of par	ts dipped (p	arts/hr]:		1	
Annual bath	operating hi	ours:			365	
Bath is NOT	sparged			17	No	
-						
-					-	
Bath is cove	red			1	Yes	
Average nu	mber of time	2				
Maximum number of times cover is lifted per hour:					2	
Average percentage of time uncovered:					5	
Maximum percentage of time uncovered:					10	
Bath temper	rature (oC):			2	40	
Beth solution	n is:		Hydrogen	peroxide	100.00%	
			yan a gan			

Figure 13. Chemical Bath Emissions Estimation Model.

Based on the input entered in Figure 13, the following emission results are calculated (Figure 14).

B. Model ca	alculation results.	
1	Average hourly emissions (lb/hr):
	Evaporative (covered)	0.0221949
	Evaporative (uncovered)	0.0011682
	Dragout	0.0357708
	Sparging	0
	Uncovering	0.0020535
	TOTAL	0.061187
2	Peak hourly emissions (lb/h	r):
	Evaporative (covered)	0.0210267
	Evaporative (uncovered)	0.0023363
	Dragout	0.0357708
	Sparging	0
	Uncovering	0.0020535
	TOTAL	0.0611873
3	Annual emissions (tpy):	
	Evaporative (covered)	0.0040506
	Evaporative (uncovered)	0.0002132
	Dragout	0.0065282
	Sparging	0
0	Uncovering	0.0003748
	TOTAL	0.0111667

Figure 14. Chemical Bath Emissions.

Spray cleaning tools

Emissions of spray cleaning tools are estimated by using empirical data collected from similar applications, scaling for chamber size, and adjusting for vapor pressure and temperature.

To estimate the emission of a spray tool, we first calculate the volume of the process chamber for which we need to estimate the emission. A surrogate tool is selected from the library of stack test data which has similar spray characteristics. We calculate the volume of the process chamber for the surrogate tool. The estimate of emissions for the new tool is made by adjusting the emission rate from the surrogate tool based on the equivalent difference of process chamber volume. For example, if new tool "A" has a chamber volume of 29.5 cubic feet and the surrogate tool "B", for which empirical data is available, has a process chamber volume of 13.1 cubic feet, the estimated emission of tool "A" would be the known emission rate of surrogate tool "B" X 2.25.

By comparing the vapor pressures of the chemical at the temperature planned for use in the new tool (assuming similar spray characteristics), we can adjust emission rates by selecting a surrogate chemical for which empirical data is available and adjusting for difference in vapor pressure. (See figure 15).

Figure 15. Vapor Pressure Curves².

Organic Slurry/Photoresist Application

Emissions from tools which apply organic slurries or photoresist are estimated using a materials balance approach. First "shot" or "Job" size is determined for a specific material to be applied. The specific chemical components and concentrations of the material to be applied are available in the ECOL system. Surface areas of both the product and receiving vessels are calculated. The process engineer provides the depth of thickness of the applied material and a total volume is calculated. From this volume and the specific chemical data we can then assume that the emission is equal to 100 percent of volatile chemical components present.

Supporting Activities

Supporting activities at the plant include chemical /waste handling, waste water treatment and fuel combustion for generating high temperature hot water. Calculation methods for these activities are readily available from USEPA and include:

- *Combustion source emissions* are calculated by inputting the appropriate fuel use into the ECOL system. ECOL uses AP-42 to calculate the appropriate emission data.
- *Emissions from Storage Tanks* are calculated by entering dimensional and turnover data into the ECOL system. ECOL uses USEPA Tanks 4 to calculate emissions.

COMPARISON OF CALCULATED EMISSIONS TO STACK TEST DATA

Actual hourly emissions data were calculated in ECOL for several of the emission units on-site using the methodologies described in this paper. Stack tests for the same set of tools and time frames were also performed. Figure 16 is a comparison of the calculated emissions in ECOL and actual stack test data. The results show that the detailed calculated emission estimates are reasonably close to stack test data. Note that the data estimated by ECOL is intended to be conservative and generally over states actual emissions.

Source	chemical	stack test	ECOL
B/334	ammonia	0.18	0.28
B/650	ammonia	0.24	0.49
B/650	ammonia	0.29	0.29
B/323	NMP	0.00	0.01
B/334	NMP	0.50	0.85
B/650	NMP	0.08	0.09
B/334	IPA	1.65	1.93
B/650	IPA	0.79	1.43
B/323	IPA	0.05	0.02
B/320	IPA	0.24	0.13
B/323	Ethyl Lactat	0.00	0.00
B/650	Ethyl Lactat	0.08	0.06
B/650	Gama butly	0.01	0.03

Figure 16. Stack Test Emission Data versus ECOL Calculated Emissions.

CONCLUSION

IBM's Environmental Control of the Line (ECOL) management system is used to track the air, water and waste emissions for all of the manufacturing tools used at the facility. Recent additions to the ECOL system have improved and standardized emission calculation methodologies. By incorporating the most accurate emission methodologies available into the ECOL system, IBM has a comprehensive Title V compliance tool, which is able to produce very accurate emission reports. These reports are currently used for planning purposes and reporting to the regulating agency.

REFERENCES

- 1. Preferred and Alternative Methods for Estimating Air Emissions from Semiconductor Manufacturing, Eastern Research Group prepared for Emission Inventory Improvement Program, February 1999.
- 2. Chemical Engineer's Handbook 4th Edition, Perry, R.H., McGraw-Hill: New York, NY, 1963.

KEY WORDS

Title V Continuous Compliance, Environmental Data Management, Emission Calculation, Environmental Software